Black White Sample Pack

Sample pack Black on White media
7 different materials
2" x 2" area

In stock
BW Sample Pack


Black on White Sample Pack

This sample pack is a great opportunity to try and test various products we have for creating black on white reticles and targets - allowing you to work out which product conforms to your needs without committing to a larger order.

In the pack, there are 7 differentformats - all of them presented in a 2" x 2" sample:-

  • Black chrome with white plasticoat backing
  • Black chrome with white plasticoat fronting
  • Black emulsion film with white plasticoat backing
  • Black emulsion film with white plasticoat fronting
  • Black and white bromide paper
  • Black chrome on White Nextrema Ceramic
  • Black chrome on translucent / 30% diffuser white glass

The design is a simple checkerboard pattern, with 5mm squares.




Soda Lime Glass is the most common substrate used for masks, due to its good quality/price ratio. The glass is optically good, very flat and has no imperfections. If used in a photo-lithographic process, glass can be used with a very wide variety of light sources from 350nm upwards, with an excellent UV transparency. Soda Lime glass has a thermal co-efficient expansion of 93 (10-7) which is approximately 10 ppm (parts per million) , and a transmittance value of 88% at 375-450nm, with a glass flatness class of 5um for the smaller plates and 10um for the larger plates. Some of the very big plates of 14" and above, may have a bigger flatness tolerance of upto 40um. We would recommend always using Soda Lime glass where it is suitable due to its relative inexpense.


Quartz (Fused Silica) is not as common due to the expense of the material, but quartz brings the very best stabilised material thermally, along with a very clear base that allows a wide variety of wavelengths to pass through at very good transmission rates. The thermal co-efficient expansion is 5(10-7) which is approximately 0.5 ppm (parts per million). Flatness of this material is best-in-class, with 2um flatness for small plates, and 5um for mid sized plates.


B270 or BOROFLOAT® are made out of Borosilicate, and are ideal for high temperature and harsh environment applications. Unlike common borosilicate that is drawn flat, BOROFLOAT® is produced by a float technique that yields superior surface accuracy. BOROFLOAT® is about three times more resistant to thermal shock than standard soda lime glass, and has a thermal co-efficient expansion is 35 (10-7) which is approximately 4 ppm


Diffuser Glass White Diffusing Glass is a semi-opaque diffuser designed to create even illumination profiles. Unlike alternative materials, which create their diffusive properties through a coating or lamination process, the White Diffusing Glass is a solid diffuse material, allowing it to be used in any orientation. Because the surfaces are polished, the reflected light will be somewhat specular, while the transmitted light will be near-Lambertian. White Diffusing Glass is ideal for creating even illumination as an attenuator or as a viewing screen. Anti Glare coating can be added as an optional extra.


Nextrema WHITE is a specialist ceramic "white" glass that offers a white opaque surface , and is ideal for high temperature and harsh environment applications due to its very low thermal co-efficient which is nearing that of Quartz.






Aluminium coatings are very soft and can easily be damaged during use and even cleaning. However, their conductive/resistive properties make them useful for certain applications, as well as the Aluminium being a better conductor of heat than chrome, so the material does not heat up as much during laser ablation processes.


Chrome Coatings are much more robust materials and can be cleaned fairly easily without fear of damage. It is coated onto the plates in very thin layers, which thickness may vary depending upon the OD (Optical Density) required - but generally ranges in the 0.1um to 0.15um thick.


We can coat with other materials, such as Titanium, Gold and ITO..but specialist coatings means that we have to run a complete chamber full so there will be minimum order quantities required, varying between 5 and 30 plates depending upon the plate size.







Low Reflective Chrome:  The chrome that is coated on the plate would normally have a bright mirror-like finish to it, reflecting at about 75%. We need to protect this surface with an oxide coating (chrome oxide) , and this oxide is applied to not only protect the surface but also to change the reflectivity of the plate. Our standard product is a LRC (Low reflective Chrome) which reflects around 12% in the UV wavelengths and therefore is most suitable for applications using Mask Aligners and other UV exposure equipment. Low Reflective refers to the oxide coating which is applied to the top surface of the chrome plate. This oxide makes the surface appear “yellow/gold” to our eyes when we hold the plate in a way that the light reflects off it. Because this oxide is applied after coating, the underneath surface of the chrome – the surface that sits against the glass – will remain bright/shiny with a mirror like finish.


High Reflective Chrome: We also have a small range of High Reflective chrome. This chrome still has an oxide coating over the surface, so is not as reflective as the "underneath" side of the plate, but still reflects high at around 50%


Blue chrome: We stock a small amount of “blue” reflective chrome. This is low reflective when using the plate in the visible spectrum, so is the best solution for components that are used optically.  With this material, our default is to have the oxide applied to both surface of the chrome so it will appear identical when looked from the front (chrome side) or the back (glass side), meaning internal reflections are kept to a minimum.






OD3 - Optical Density is a measurement given to the chrome optical characteristics, and will change depending upon the wavelength used. OD3 means that the chrome surface will transmit only 0.15% of light in the visible spectrum, and equates to a chrome thickness of approximately 0.1um


OD5 - The chrome is coated to a thicker layer of approximately 0.15um thick, allowing even less light to transmit through (0.015% in the visible spectrum)


OD1 - Some customers actually want a large amount of light to transmit, therefore bringing the contrast ration down. Our OD1 plates are coated very thinly, and appear "see through" to the human eye. They can be sued in specialist graphics applications or to replicate an Iron-Oxide plate which allows for easy registration of the plate to sub layers.


OD1.8 - Another thin chrome coating giving a transparent basis.



The way that the masks are manufactured means that we have a "keep out" area that we cannot write critical features to -  this equates to a 10mm border around the edge of the plate.  This is because the resist is slightly thicker in the corners and edges, where it builds up during the spinning process. We use ‘fringeless’ blanks wherever possible, so can image outside of this area if necassary, but recommend only  text and  references marks in this outer area.



The specification of the raw materials and the photo-resist, mean that there may be minor defects that appear randomly across the image. Usually these defects are cosmetic only, and most often the defect actually causes no working problem with the design. A defect is defined as having a size greater than the required rate, and can take many forms such as a "pinhole" in what should be the chrome/emulsion part of the mask, or it can be a chrome / emulsion spot in the clear part of the mask (also referred to as 'shorts' or 'breaks'). A defect is any flaw affecting the geometry that passes the authorised specification for the order. 

The customer may indicate the size of defects that will affect their process (defect spec). All defects which break these rules must be repaired, or if they cannot be repaired, the mask must be rejected and rewritten. Where no defect spec is given by the customer, we use our own internal standards.

There is also a class of defects known as cosmetic defects. These are defects that may not affect the geometry but still may not be acceptable to the customer. Cosmetic defects include scratches on the chrome outside the array, damaged or partially removed AR coating, contamination on the chrome, glass chips on the edge of the mask, etc.

The Customer Defect Specification Form is to be used by customers to inform us of their defect specifications. It may be supplied to cover every order within a given time frame, or on a per order basis. If the form is not submitted, our own internal specifications take over.  These specifications will be used by our front end engineers to asses if masks can be written before going into the write phase, and customers will be informed where specifications are deemed to be unachievable.





Q: What is the smallest feature that you can do ? 
A: This depends upon the resolution that we image at, the material that we use, the tone of the photoomask, and most importantly the feature type (Spot, square, line etc). This all makes it very hard to give a figure, but as a very rough guide we can make 2-3um on an "everyday" basis , and down to 1um and possibly below using our highest resolution services (please ask).

Q: How accurate are the features, what tolerances do you work to ? 
A: This is dependant upon the resolution that we image the photomask at. The QUICK REFERENCE brochure in the DOWNLOADS section will give you a chart, specifying both feature and dimensional tolerances.

Q: What resolution should i pick ? 
A: The higher the resolution, then the sharper the edges of the features, the smaller the features possible, the more accurate the features will be, the sharper the corners in of the features, and also the smoother the circles. Some customers will notice this difference straight away, some will hardly notice any difference. Every customer has different requirements and different priorities. If in doubt, chose a higher resolution to ensure your requirements are met, but we are happy to advise if you send us your database.

Q: What does the term POLARITY and FIELD mean ?
A: Polarity is the tone of the photomask. In layman terms, this is usually described as POSITIVE or NEGATIVE. When you draw your photomask design, polarity determines whether the features on the mask are CLEAR or DARK on the final plate. The field refers to the background tone of the mask. So, a DARKFIELD mask would have the items you have drawn as CLEAR, with the background of the mask as DARK. Obviously this is the opposite for CLEARFIELD, where the field behind is clear and the design features are DARK. Remember, this is polarity or tone of the mask that we manufacture, and NOT the polarity of the wafer you are using. If used in contact lithography, the tone of the photoresist that you use will also affect which polarity to order.

Q: I've designed my photomask with the wrong polarity - what do i do ? 
A: We can use the original design file and simply reverse the tone of the photomask. This is much easier than supplying new data.

Q: What is Right Reading, Wrong Reading and Mirrored.
A: Right Reading Chrome side Down is the most common way to describe a photomask that will be used for contact lithography. When you hold the mask in your hands with the chrome side facing down closest to the wafer, the image on the mask will be correct or how it should appear on the wafer. This is equivalent to Wrong Reading Chrome side Up. For us to make this happen we have to Mirror the image of your photomask before we write it.



PDF Download

Nextrema Material Specification